

AFRL-IF-RS-TR-2002-142
Final Technical Report
June 2002

FUSELET DESIGN AND IMPLEMENTATION:
A PRACTICAL FRAMEWORK FOR THE
CREATION OF THE JOINT BATTLESPACE
INFOSPHERE

Alphatech, Inc.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory,

Information Directorate, Public Affairs Office (IFOIPA) and is releasable to the National
Technical Information Service (NTIS). At NTIS it will be releasable to the general
public, including foreign nations.

 AFRL-IF-RS-TR-2002-142 has been reviewed and is approved for

publication.

APPROVED:

 FOR THE DIRECTOR:

 MICHAEL L. TALBERT

 Technical Advisor
 Information Technology Division
 Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
Jun 02

3. REPORT TYPE AND DATES COVERED
Final May 01 – Apr 02

4. TITLE AND SUBTITLE
FUSELET DESIGN AND IMPLEMENTATION: A PRACTICAL FRAMEWORK
FOR THE CREATION OF THE JOINT BATTLESPACE INFOSPHERE

6. AUTHOR(S)

 Eric Jones, Basil Krikeles, Howard Reubenstein and Dan Bostwick

5. FUNDING NUMBERS
C - F30602-01-C-0082
PE - 63789F
PR - 487B
TA - TD
WU - 01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Alphatech, Inc.
50 Mall Road
Burlington, MA 01803

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/IFTD
525 Brooks Road
Rome, NY 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2002-142

11. SUPPLEMENTARY NOTES
AFRL Project Engineer: James R. Milligan, IFTD, 315-330-3013, milliganj@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
In this effort, two fuselet authoring tools were developed and incorporated in a demonstration system utilizing AFRL’s
Adaptive Sensor Fusion (ASF) technology for data communication and component encapsulation. Fuselet components
created by the authoring tools fall into two categories: adaptor fuselets and correlator fuselets. These fuselets were
demonstrated in the context of a Joint Battlespace Infosphere (JBI) operational scenario.

15. NUMBER OF PAGES
35

14. SUBJECT TERMS
Joint Battlespace Infosphere (JBI), fuselets, Adaptive Sensor Fusion (ASF) agents, active
templates, fuselet authoring, Prolog, CORBA 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

i

TABLE OF CONTENTS
1. INTRODUCTION.. 1

2. ASF MIDDLEWARE... 3

2.1 ASF DESCRIPTION AND CAPABILITIES... 3
2.1.1 Ontologies.. 3
2.1.2 Publish/Subscribe .. 5
2.1.3 Creating ASF Encapsulated Components.. 5

2.2 ASF FOR SUPPORTING THE AUTHORING OF FUSELETS ... 6

3. FUSELET AUTHORING.. 8

3.1 ADAPTER FUSELET AUTHORING TOOL ... 8
3.2 CORRELATOR FUSELET AUTHORING TOOL... 15

3.2.1 Correlator Natural Language Interface .. 18

4. DEMONSTRATION SYSTEM .. 21

4.1 OBJECTIVE OF SYSTEM ... 21
4.2 EXAMPLE PROBLEM ... 21
4.3 SCENARIO... 22
4.4 COMPONENTS ... 22

4.4.1 Ontologies.. 23
4.4.2 Data Sources.. 24
4.4.3 Fuselets .. 25
4.4.4 Visualization .. 26
4.4.5 Fuselet demonstration.. 27

5. CONCLUSION... 29

REFERENCES... 30

ii

LIST OF FIGURES
FIGURE 2-1 UML STRUCTURE DIAGRAM OF ASF ONTOLOGIES..4

FIGURE 2-2 ASF DATA TRANSPORT SERVICES ..5

FIGURE 2-3 THE ASF ENCAPSULATION METHODOLOGY ...6

FIGURE 3-1 ADAPTER FUSELET TRANSFORM DATA OBJECTS..8

FIGURE 3-2 JBI ADAPTER FUSELET TOOL..10

FIGURE 3-3 TYPE DETAIL PANEL ...11

FIGURE 3-4 ADAPTED TYPE PANEL WITH NEWLY NAMED TYPE..12

FIGURE 3-5 TRACK_POINT TYPE WITH TWO NEW ATTRIBUTES ..13

FIGURE 3-6 CREATE NEW ATTRIBUTE DIALOG BOX...13

FIGURE 3-7 FUNCTION SELECTION DIALOG BOX SHOWING TWO AVAILABLE FUNCTIONS....................14

FIGURE 3-8 NEW ATTRIBUTE X DEFINED IN TERMS OF A FUNCTION OF LAT AND LON...........................14

FIGURE 3-9 NEW ATTRIBUTE X ADDED TO TRACK_POINT ..15

FIGURE 3-10 DIALOG BOX SHOWING THE SOURCE OF THE ATTRIBUTE TRACK_ID15

FIGURE 3-11 CORRELATOR FUSELETS ASSOCIATE OBJECTS...16

FIGURE 3-12 PROCESS FOR GENERATING EXECUTABLE CODE FROM CORRELATION SCRIPT16

FIGURE 3-13 CORRELATION SCRIPT ..16

FIGURE 3-14 PARSE TREE..17

FIGURE 3-15 EXECUTABLE CODE FOR CORRELATOR FUSELET ...17

FIGURE 3-16 JBI CORRELATOR TOOL ..18

FIGURE 3-17 EXAMPLE OF A NL INTERFACE..19

FIGURE 3-18 EXAMPLE OF POP-UP SELECTION MENU ...19

FIGURE 3-19 EXAMPLE OF FREE TEXT ...20

FIGURE 4-1 COMPONENT STATUS WINDOW ..22

FIGURE 4-2 IBVS VISUALIZATION TOOL ..27

1

1. INTRODUCTION

In 1996, the Chairman of the Joint Chiefs of Staff issued Joint Vision 20101,2, a conceptual
framework that set the stage for the Armed Services to begin to plan for future missions, and
capabilities. This framework was intended as a mechanism by which the Services could leverage
technological advances as a means to achieve dominance across a spectrum of operations. A
cornerstone of this framework is information superiority: the ability to collect, to process, and to
disseminate an uninterrupted flow of information while exploiting or denying an adversary’s
ability to do the same. Information superiority will be a lynchpin for the future success of joint
operations.

More recently, the Air Force Scientific Advisory Board (AFSAB) has expanded and
refined this concept. They recommended that the Air Force adopt as a goal the development of a
Battlespace Infosphere (JBI) 3,4 a military information management system for providing
integrated mission understanding, shared awareness, shared planning, shared execution, shared
visualization and shared predicted views. However, in doing so, they also recognized that
currently deployed military information systems are unable to meet these requirements, because
they employed “closed” architectures that rely upon fixed data flows between predetermined
“stovepipe” components. It is inherently difficult to modify and extend the processing
configuration of these architectures, making it very difficult to meet evolving mission requirements
or to adapt to a rapidly changing operational context. Typically, many months, or even years, are
required to make the engineering and software modifications necessary to change the data flow of
such systems. Integration of the stovepipe systems with components that were not explicitly
accounted for during the design process is difficult, and often impossible.

Perhaps as important as their lack of interoperability with other military systems, today’s
military information systems are incapable of leveraging today’s most prominent of information
sources—the Internet. More often than not, this lack of interoperability with civilian information
sources can be traced to either a lack of compatibility with commercial standards or the reliance
upon obsolete technology. Although the recent trend in military architectural standards, for
example the Joint Technical Architecture or the DII-COE standards, have been designed
specifically to address these issues, significant amounts of work remain to be accomplished.

Numerous programs in recent years, including DARPA’s Battlespace Awareness and Data
Dissemination (BADD) Program and the Joint Task Force–Reusable Architecture ATD have
started to address various aspects of this problem. The Dynamic Database (DDB) and the
Dynamic Multi-User Information Fusion (DMIF) programs have focused on the problems
associated with the design and construction of component-based architectures for data fusion.
However, the architectures the systems developed under these programs have not adequately
leveraged the most recent of commercial technologies, nor have they adequately addressed the
issues associated with collecting and manipulating information in network-centric environments
and the Internet.

In sharp contrast to existing “closed” architectures, the JBI must allow users to rapidly
configure pre-existing software components to work together in new ways. In this effort
ALPHATECH has developed fuselet authoring tools that directly address this issue.

To develop this authoring capability, ALPHATECH leveraged ongoing research efforts in
DARPA’s Active Templates program and an AFRL-sponsored SBIR An Instructable Agent for

2

Rapid Knowledge Base Design. Under Active Templates, ALPHATECH developed template-
based restricted natural language technology for man-machine communication. Under the
“Instructable Agent” SBIR, ALPHATECH is adapting this technology to support rapid
specification of domain-specific ontologies, with particular attention to ontologies for processes
and procedures.

We also leveraged work we have done under AFRL’s Adaptive Sensor Fusion (ASF)
program. ASF is a distributed systems development environment that provides a set of services to
support the requirements of creating distributed systems. ASF provides a mechanism to share data
based on the concept of ontologies. ASF also provides distributed component control mechanisms,
point-to-point publish/subscribe being the mechanism of primary interest.

In this effort ALPHATECH has developed two fuselet authoring tools and incorporated
them into a demonstration system utilizing ASF for data communications. We developed tools for
authoring Adapter Fuselets and Correlator Fuselets. Adapter Fuselets are fuselets for adapting
data objects of one type into data objects of another type. Correlator Fuselets detect associations
among data object based on specified criteria. Our fuselet authoring tools employ graphical user
interfaces (GUIs) which enable a user, who is not a trained computer programmer, to author
fuselets.

We employed our fuselet authoring tools in a demonstration system to illustrate how
fuselets may work in a real JBI. The demonstration system’s development was driven by a use
case in which the user is trying to solve the problem of getting three clients to communicate: a
ground vehicle tracker, a missile launch analyzer and a visualization tool. In our use case, two
fuselets are employed to facilitate the communication.

Each fuselet and client is encapsulated as an ASF component. These components use ASF
publish and subscribe to communicate via CORBA. The fuselets embody a generic fuselet
interface that we developed to be independent of a fuselet’s functionality or underlying
implementation language.

3

2. ASF MIDDLEWARE

2.1 ASF description and capabilities
The ASF middleware was used as a host platform for deploying the fuselets developed

under this effort. In the absence of a full fledged implementation of core JBI platform services to
deploy and execute our fuselets on, we used ASF as a stand-in to provide both a concrete
deployment target and some services similar in nature (from a component-centric viewpoint) to
those provided by the JBI core services.

A crucial design feature of the ASF architecture is the separation between lightweight,
high-level ontologies for describing the battlespace and low-level data structures designed to
support persistence and inter-process communication. ASF allows users to build sophisticated,
flexible, high-level models of a problem domain, implemented in terms of a fixed low-level object
model called the Generic Transport Object (GTO) model. Ontology definitions are treated as data
(and are persisted in the data store), rather than as source code. Because ontology definitions are
treated as data, the framework provides the capability to add, refine and extend these definitions
without recompiling existing components or modifying the low-level database schema.

Decoupling the ontology mechanism from the transport and database data model (schema)
results in a system with two desirable characteristics. First, the domain model can evolve without
changing the low-level database schema. Second, the transport layer can be optimized without
interfering with the domain representation.

The analogy we based our implementation on is that the JBI structured common
representation was simulated via use of ASF ontology services. JBI publish/subscribe was
simulated via use of ASF point-to-point publish/subscribe. We did not in any way implement a JBI
core services platform, but by using mechanisms similar in nature to the services provided by the
JBI platform, our fuselet experiments provide insight more readily applicable to the JBI efforts.

2.1.1 Ontologies
ASF components exchange data by making use of shared data representations defined by

ontologies. An ontology is an implementation neutral definition of shared domain concepts. In an
ASF-based system domain data engineering is performed by creating ontologies. The structure of
ontologies is summarized in the following UML diagram.

4

enum erat ion
nam e : s tring
des c r : s tring
values : vec tor< s tring>

onto logy
nam e : s tring
vers ion : s tring

*
+ enum erat ions

*

en ti ty
nam e : s tring
des c r : s tring
bas eE nt ity O nto : s tring
bas eE nt ity : s tring**

+ ent it ies

attribute
nam e : s tring
des c r : s tring
ontology : s t ring
enum O rE nt ity : s tring
in it ia liz ers : vec tor< s tring>
c ons tra ints : vec tor< s tring>
unitO fM eas ure : s t ring

*

+ attributes

*
att rTy pe s

INTE G E R : integer
INTE G E R_S E Q : integer
DO UB LE : double
DO UB LE _S E Q : in teger
S TRING : in teger
S TRING _S E Q : integer
US E R_DE F INE D : integer
US E R_DE F INE D_S E Q : integer

+ ty pe

E num erat ion of a ll
s upported at t ribute ty pes .

Figure 2-1 UML structure diagram of ASF ontologies

An ontology consists of a set of entity definitions with each entity having a set of typed
attributes. ASF provides an ontology editor that supports the construction of ontologies. Once an
ontology is defined it can be compiled into a concrete representation via the ontology compiler
which will produce either Java or C++ class implementations. The generated implementations
include a representation of all the domain level entities and attributes. In addition, a set of helper
methods are defined that support efficient transport of ontology instances via the use of GTOs.
The power of the ontology mechanisms comes from the fact that implementations are
automatically generated from domain descriptions and can be regenerated after any domain
engineering changes. In addition, the application programmer does not worry about the transport
mechanisms as supported by GTOs. The ASF libraries and the ontology compilers provide all the
code for dealing with efficient transport of data objects. The application programmer makes use of
the classes generated by the ontology compiler and can use these directly in his program or can
map these classes to implementation classes already present in the software module (this is part of
the encapsulation methodology discussed below).

Ontology-based component development provides a methodology that allows an ASF
system programmer to concentrate on the domain engineering aspects of their problem while
robust and efficient implementations for use in the operational system are automatically generated
by the ontology compilers.

5

2.1.2 Publish/Subscribe

Component
A

Component
B

Shared
Ontology

GTOs via CORBA connection
(publish/subscribe)

Files

Shared
Ontology GTOs

GTOs

Database

Figure 2-2 ASF Data Transport Services

ASF supports a number of data transport services all based on the GTO representation as
the “wire” transport. The GTO representation provides an efficient ontology independent byte
stream representation for transmission of data over persistence APIs (to files or databases) and
over publish/subscribe APIs.

In this effort we make use of the ASF point-to-point publish/subscribe mechanism. Data
sinks and sources can include: files, databases, or other ASF components. In this project we
primarily make use of the component to component publish/subscribe mechanism and we take
advantage of the file data source in our proxy components.

The ASF component to component publish/subscribe mechanism is supported by CORBA
transport services. The ASF encapsulation library (describe below) supports an ASF IDL interface
that captures the basic mechanisms of component to component communication and persistence
interfaces. In the case of data publishing, the transport is accomplished by transport of a GTO byte
sequence via a CORBA remote object method invocation.

2.1.3 Creating ASF Encapsulated Components

6

Figure 2-3 The ASF Encapsulation Methodology

Encapsulating a system (legacy or new development) to use ASF services is designed to be
as unintrusive as possible to system development. The primary activity is to build a component
adapter that mediates use of ASF services to the I/O needs of the encapsulated component. In
addition, a main routine that launches the component and establishes CORBA connectivity (if
necessary) is required. Taken together the development of the adapter and the server main() is a
relatively small effort.

2.2 ASF for supporting the authoring of fuselets
ASF provides a point-to-point publish subscribe service. While point-to-point publish

subscribe is fundamentally different than JBI broadcast or “anonymous” publish/subscribe, it
provides a base communication mechanism that is representative of the nature of the data
interchange from the components’ point of view, i.e, a component subscribes to a data stream and
receives input from anonymous providers.

Each full-fledged client in our demonstration system (Tracker Proxy, Launch Proxy, and
Display) implements a core functionality that is middleware independent. Each of these
components was encapsulated to use ASF point-to-point publish/subscribe over CORBA transport.

Each fuselet shares a common (Java) code template and is instantiated with a function
specific core implementation generated by the fuselet authoring tools. The fuselet common code
template makes use of the following mechanisms:

• CORBA transport via a main server routine that initializes the fuselet component and
establishes connectivity with the Java ORB

• Use of ASF publish/subscribe via calls to the appropriate ASF encapsulation interfaces.

Control

Native Data

Adapter
ASF Encapsulation

Library

ASF Programmer’s API

ASF
CORBA

API

Database

Existing
Component

File

Encapsulated Component

Server
Main

P/S

7

• Activation of the fuselet core implementation via use of the services provided by a
generic Java-based fuselet wrapper interface. This interface provides independence
from the implementation details of the fuselet computational core.

• Simple GUI component monitoring via a reusable component monitoring service.

ASF provides a computational platform for connecting the clients and fuselets in our
demonstration system via mechanisms that provide JBI-like connectivity. The details of an actual
JBI-based implementation would, of course, be significantly different but the overall architectural
style (from a component-centric viewpoint) is similar enough to provide lessons relevant to fuselet
construction and deployment in an operating JBI.

8

3. FUSELET AUTHORING

A fuselet authoring capability allows a user, who is not a trained computer programmer, to
describe the computation to be performed by a fuselet. The fuselet authoring capability developed
in this effort focused on the ability to author two types of fuselets:

• Adapter fuselets: Fuselets whose primary function is to supply missing “glue” code
required to interconnect existing JBI clients, both pre-existing fuselets, and other JBI
clients that are not fuselets. These fuselets transform the form and content of the output
of one client to make it suitable for processing by another client. A simple example is a
fuselet that transforms spatial information expressed in one system of geo-coordinates
into another. Another, more complex example is a fuselet that extracts the data points
of an MTI track and re-represents them as events for processing by an event-based
fusion component.

• Correlator fuselets: Fuselets that perform some computation on published information
to provide information of direct interest to an end-user. An example of such fuselet is a
simple non-probabilistic event correlator that correlates events based upon their spatial
and temporal proximity.

While we do not claim that these are the only two types of fuselets, we believe that they
provide a sufficiently large space of possibilities to adequately demonstrate our fuselet authoring
capability.

Our fuselet authoring tools consist of graphical user interfaces, implemented in Java,
supported by XSB5 Prolog code to implement the fuselet authoring capability. The tools represent
the data types that are published and subscribed to in a JBI as classes in the ALPHATECH
Knowledge Server (AKS). AKS is a lightweight frame-based knowledge representation system
built on top of Prolog.

The authoring tools generate XSB Prolog code that implements the computation specified
by the user. This code forms what we call the fuselet body. The fuselet body is enclosed in a Java
wrapper in order to communicate via ASF as described in Section 2. The fuselet body manipulates
instances in AKS; these instances correspond to the data objects in the JBI. We describe our
fuselet authoring tools in more detail below.

3.1 Adapter Fuselet Authoring Tool
Adapter fuselets transform data into a form usable by other fuselets. For example, a data

object may contain a number of fields irrelevant to the processing that needs to be done. One may
use an adapter fuselet to create a "pared down" version of the object that contains just the fields
needed for the specific data fusion application. In addition, new fields may be created which are a
function of fields in the source object.

A A A Adapter
Fuselet B B B

Figure 3-1 Adapter Fuselet transform data objects

9

As an example of how adapter fuselets are used, consider the problem of correlating track
reports with launch reports. Only a few attributes of a track report are relevant for this problem,
namely: the track id, track time, track status (stopped or moving), and track location. Many other
attributes (such as type of sensor used, measures of error) are not used in correlating tracks with
launch events. Accordingly, the track report data objects received from the GMTI tracker are
transformed by an adapter fuselet into AKS objects containing just those fields.

The top-level adapter function takes an input data object and a derived class based on the
class of the input object, and returns an instance of the derived class with field values derived from
those of the source object.

To set the value of a field for a derived object from a source object, a correspondence must
have been defined between the derived field and fields in the source object. The correspondence
can be that of identity -- i.e. the value of the derived field may be identical with the value of the
field of the same name in the source object. Or it may be a function of fields in the sources object
-- e.g. x and y coordinates in a track point object are each functions of latitude and longitude fields
in input track reports. These correspondences are generated by the Adapter Fuselet Authoring
Tool and are expressed as Prolog predicates.

The Adapter Fuselet Authoring Tool window is divided into two main areas; an area
showing data types available from the JBI on the left and an area showing an adapted type on the
right, see Figure 3-2.

10

Figure 3-2 JBI Adapter Fuselet Tool

The Available Data Types panel is further subdivided into two areas; a panel showing all
available types on the left and an area showing a particular data type on the right. The Available
Data Types panel shows all data types that are available to adaptation. In Figure 3-2, the types
mte_track_point, mte_trck_frame and launch_report_t are available. Double clicking on one of
those type names will display the type in the Type Detail View panel as in Figure 3-3 where the
type mte_trck_frame is shown.

11

Figure 3-3 Type Detail panel

The Type Detail panel shows one particular type in a tree view. The root of the tree is the
name of the type and its children are the attributes of the type. Attributes whose type is another
data type may be expanded to show the attributes of that type. For example, in the type
mte_trck_frame you can click next to the attribute frame_time to see that frame_time has two
attributes of its own, sec and millisec. The buttons at the bottom of the panel may be used to fully
expand or collapse the tree view.

The Adapted Type panel is where the user defines how one type is adapted from an
existing type. The Type Name button is used to name the new type. In Figure 3-4, the user has
named a new type track_point. The Adapted Type panel uses a tree view to display data types just
like the Type Detail View panel. The root of the tree is the name of the adapted type and the
children are the attributes of the type.

12

Figure 3-4 Adapted Type panel with newly named type

Attributes may be added to an adapted type in two ways; they may be directly copied from
an existing type or they may be the result of applying a function to attributes of an existing type.
To copy an attribute from an existing type the user simply drags an attribute from a type in the
Type Detail View panel and drops it on the name of the adapted type. This is how the attributes
track_id and status were added to track_point in Figure 3-5.

13

dragged

dragged

Figure 3-5 Track_point type with two new attributes

To define a new attribute in terms of a function of attributes of an existing type, click on
the Create Attr button at the bottom of the Adapted Type Panel. This displays the Create New
Attribute dialog box, Figure 3-6.

Figure 3-6 Create New Attribute dialog box

Using this dialog box, the user can name the new attribute and provide a functional
definition of the new attribute. To choose a function, click on the Use Function button; a list of
available functions is displayed for the user to choose, Figure 3-7.

14

Figure 3-7 Function selection dialog box showing two available functions

Once a function is chosen, it appears in the Definition text field with missing arguments.
The user fills in the arguments by dragging attributes from a type in the Type Detail View panel
into the Definition text field. Figure 3-8, shows a new attribute, x, that is defined as a function of
the attributes lat and lon. X will be the x-coordinate of the conversion of (lat,lon) to UTM
coordinates.

Figure 3-8 New attribute x defined in terms of a function of lat and lon

Clicking the OK button adds the new attribute to the new type, as shown in Figure 3-9.

15

Figure 3-9 New attribute x added to track_point

The user can see how an attribute of a new type was derived by double clicking on the
attribute in the Adapted Type panel, this will display a dialog box showing the origins of the
attribute. In Figure 3-10, we can see that the track_id attribute originated from the type
mte_trck_frame, attribute track_data, attribute track_id.

Figure 3-10 Dialog box showing the source of the attribute track_id

The Expand and Collapse buttons at the bottom of the Adapted Type panel may be used to
fully expand or collapse the entire tree view. To remove an attribute form a new type, the user
may select it and then click the Remove Attr button. When the adaptation has been fully defined,
clicking the Generate button will generate the code needed to implement the adaptation.

3.2 Correlator Fuselet Authoring Tool
A correlator fuselet detects associations among data objects based on a user-defined

association criterion. In our use case, the object is to correlate track reports with launch events.
We wish to find start or endpoints of tracks that are within a certain distance from a launch event
and whose times are sufficiently close to the time of launch.

16

Correlator
Fuselet

A A

B B

A

B

A

B

Figure 3-11 Correlator fuselets associate objects

To create such a fuselet, the fuselet author generates a fuselet script using the restricted
natural language interface of the Correlator Fuselet Authoring Tool. This script is generated
according to a specified script grammar. This grammar is used to generate a parse tree for the
script that is input to the script translator. The script translator takes the parse tree and recursively
translates it into executable code, Figure 3-12.

Fuselet
Script

Parse
Tree

Executable
Code

Parse Translate

Figure 3-12 Process for generating executable code from correlation script

The following figures illustrate this process with an example. Figure 3-13 shows an
example of a correlation script in English.

Output id of mte_track_point and id of
launch_report_t where status of
mte_track_point is equal to 4 and sec
of mte_track_point is no more than 3600
seconds before sec of launch_time_t and
the distance between mte_track_point
and launch_location_t is less than 1000
meters

Figure 3-13 Correlation script

Figure 3-14 shows part of the parse tree generated by the script grammar for the correlation
script.

17

OUTPUTSTATEMENT

TERMLIST

where

CONDITIONS

TERM

and

TERM

ATTRIBUTE TERM

id ...Output of track_point

CONDITION

ATTRIBUTE

TERM

TERM

status of track_point is

TERM

4

CONDITION

...
Figure 3-14 Parse tree

Figure 3-15 shows the executable Prolog code generated from the parse tree.

:-[quantities].
correlate(Mte_track_point,Launch_report_t,Output):-

findall([Track_id15,Launch_id16],(
 isa(jbi,Mte_track_point,mte_track_point),
 value(jbi,Mte_track_point,track_id,Track_id15),
 isa(jbi,Launch_report_t,launch_report_t),
 value(jbi,Launch_report_t,launch_id,Launch_id16),
 value(jbi,Mte_track_point,status,Status17),
 Status17 == 4,
 value(jbi,Mte_track_point,sec,Sec18),
 value(jbi,Launch_report_t,sec,Sec19),
 noMoreThanBefore(seconds(3600))(Sec18,Sec19),
 distance_between(Mte_track_point,Launch_report_t,Distance20),
 (Distance20) =< (1000)),
 Output).

Figure 3-15 Executable code for correlator fuselet

The JBI Correlator Fuselet Authoring Tool allows for the creation of correlator fuselets
without the need to understand computer programming. The left panel of the JBI Correlator Tool,
Figure 3-16, is the same as the left panel in the Adapter Fuselet Authoring tool; it shows the data
types available from the JBI and the details of one of those types.

18

Figure 3-16 JBI Correlator Tool

The right panel of the JBI Correlator Tool, contains the Edit Query panel where users
specify correlation criteria in the form of English sentences. Sentences may only describe
correlations between types that are listed in the left panel. When creating sentences, type names
correspond to sentence fragments labeled as “Terms” or “atomic_term”. Attributes of types
correspond to sentence fragments labeled as “Attribute”. Users may select a type or type item in
the Type Detail View and drag the item to the appropriate textbox in the Edit Query panel. The
type names and type attributes are available via drop-down menus so using the drag and drop
feature is not necessary if the user chooses not to use it.

Once the sentence describing the correlation has been completed, the user clicks on the
Generate Code at the bottom of the panel to automatically generate code implementing the
specified correlation in a correlator fuselet.

3.2.1 Correlator Natural Language Interface
The Correlator Natural Language Interface (NL interface) in the Edit Query panel of the

correlator fuselet Authoring Tool is used to create sentences based on a pre-specified grammar.
Using the NL Interface, correlation criteria are specified in the form of natural language text.

The NL interface is viewed as a GUI in written in Java with a back end in Prolog. The NL
interface constrains the set of allowable sentences to those sentences that can be generated from a
definite clause grammar. The NL interface gives the user the ability to create sentences without
having to know the grammar beforehand. After a sentence has been created in the NL interface,
data in the sentence can parsed by the back end for use by other software.

19

Combining parts of speech such as nouns, verbs, and prepositional phrases in a certain
sequence creates sentences. In the same manner, sentences created with the NL interface are
composed of elements in a certain sequence. In Figure 3-17 the “Output Statement” sentence is
created by combining elements and required text in a specific order. The labels beneath each
element indicate what type of information the element contains. There are three types of elements:
required text elements, free text elements, and regular elements.

Figure 3-17 Example of a NL Interface

Required text is text that is always associated with a element. For example, the “Output
Statement” sentence in Figure 3-17 always contains the required text “Output” and “where”.

GUI elements represent sentence fragments that consist of sub-elements and/or required
text. Figure 3-17 shows the expansion of the element “Output Statement.” Users can expand a
GUI element by left clicking the label beneath the element. If more than one expansion is
available, as in Figure 3-18 for the “Condition” element, a pop up menu will list the available
expansions. The user can choose one of these expansions simply by clicking on the desired
expansion.

Figure 3-18 Example of pop-up selection menu

In Figure 3-18 the “attribute Of Object” and “relation” are placed within angle
brackets(“<>”), while “Typed Term” is placed within square brackets (“[]”). These symbols are
used to denote whether a sub-element is required or optional. Sub-elements that are optional are
placed within angle brackets (“<>”) while sub-elements that are required are placed within square
brackets (“[]”). Required text such as the “is” in Figure 3-18 are not placed within any symbols.
Grammar elements that are optional also have labels which are italicized.

In Figure 3-17, “Optional Terms” and “Optional Conditions” have italicized labels because
they are optional elements while the required elements, “Terms” and “Condition” have normal
labels. Required elements are displayed as containing their label inside brackets to identify that
the element is not yet fully specified.

To expand GUI elements, the user left clicks on the element’s label. To collapse the
display of a grammar element, the user right clicks on the element’s label. When an element has
been collapsed, it displays the sentence fragment text that was generated. If the user decides not to

20

keep the text in a element, the text may be deleted by right clicking on the element. This will
remove the previously generated text from the element.

Some GUI elements are colored white as in Figure 3-19. These text fields allow the user to
type in any text directly into the element. To delete the typed text, select it and press backspace.
Unlike the gray element, labels beneath these elements have no functionality when clicked upon.
Text entered into one of these free-text fields will not be parsed by the Prolog backend.

Figure 3-19 Example of Free Text

For example, information entered into the “TypedTerm” field in Figure 3-19 will be
understood by the system as a condition. While it is possible to type an entire sentence into these
elements, the typed text will have no meaning to the system other than the description given below
the field.

21

4. DEMONSTRATION SYSTEM

4.1 Objective of System
The purpose of the ALPHATECH Fuselet Authoring Demonstration System is to

demonstrate :

• Fuselet authoring tools that enable users who are not computer programmers to describe the
computations to be carried out by JBI fuselets.

4.2 Example Problem
We developed a use case that drove progress on this effort. It provides examples of both

types of fuselets described above. Our use case employs several existing software components: a
(proxy for a) tracker, a (proxy for a) missile launch analyzer, and a visualization tool. Each of
these components will serve as a pre-existing non-fuselet JBI client—a provider of information
services within the publish/subscribe framework of JBI. The tracker provides tracks of ground
vehicles; the launch analyzer provides information on the location and time of perceived missile
launches; and the visualization tool displays the data on a map-based display.

In our use case, the user wishes to correlate vehicle tracks with missile launches to
determine which vehicles are possibly involved in supporting missile launches. To do this requires
several steps: first, appropriate information sources must be identified; second, data of the exact
type needed must be extracted from these sources and (possibly) reformatted for consumption by
other components; and third, the data must be combined in the appropriate way. The fuselet
authoring tools will support all three steps.

When the outputs of information sources are represented in a sufficiently rich ontology, or
are registered in a data products library, the fuselet authoring tools can use this representation to
locate information sources from which the desired data can be extracted. The user will be able, for
example, to search for components (JBI clients) or information sources that produce vehicle tracks
and launch reports and a component (JBI client) that can visualize the data.

Moreover, when the output of information sources are represented as structured objects
within this ontology, a fuselet can be constructed that extracts precisely the data wanted from a
complex object in which the data is present in some form. For example, the GMTI tracker
produces a wealth of data pertaining to a multitude of vehicle tracks. Using a formal
representation of the output of the GMTI tracker, the Adapter Fuselet Authoring Tool will enable a
user to select just the subset of that data which is of interest. The user will also be able to specify
an appropriate re-representation of this data—in our use case, track reports expressed in latitude
and longitude are transformed to UTM coordinates. The code that extracts and re-represents this
data is an example of an adapter fuselet.

Once the user has identified the proper components and deployed adapter fuselets to
compute appropriate information from the outputs of those components, the Correlator Fuselet
Authoring Tool can help the user develop appropriate correlator fuselets that exploit this
information. In our use case, the fuselet authoring tool assists the user in specifying a correlator
fuselet that correlates reports of track initiation and termination with launch reports. The
correlation is a relatively simple, non-probabilistic method in which the user specifies temporal
and spatial regions around launch events and correlates any track endpoints that fall within those

22

regions. For example, the user may specify that any track termination event that is within 2
kilometers of a launch event and at least and one hour prior to the launch event should be
correlated with that launch event. The Correlator Fuselet Authoring Tool then generates
executable code to perform the correlation.

4.3 Scenario
For our demonstration we are using data from a scenario developed at ALPHATECH for

the DMTIFE program. The scenario is based in Iran and features more than 200 tracks and six
missile launches.

4.4 Components
Our demonstration system consists of the following components:

• GMTI Tracker Proxy (corresponds to an existing JBI client)

• Launch Analyzer Proxy (corresponds to an existing JBI client)

• IBVS visualization tool (corresponds to an existing JBI client)

• Track Adapter Fuselet (fuselet created by user)

• Correlator Fuselet (fuselet created by user)

• Adapter Fuselet Authoring Tool

• Correlator Fuselet Authoring Tool

The two fuselet authoring tools generate XSB Prolog code that implements the
computational core of the fuselets. The remaining components demonstrate the use of the fuselets
to perform data transformation and fusion tasks.

The ASF-wrapped components each display a status window indicating the number of
objects received and published. The status window for the track proxy component is shown in
Figure 4-1. These status windows are for illustrative purposes only, they are not vital to the
operation of the components.

Figure 4-1 Component status window

23

4.4.1 Ontologies
ASF provides the concept of ontology to describe data that can be transported via

publish/subscribe mechanisms or persisted via a variety of mechanisms. In the ALPHATECH
Fuselet Authoring Demonstration System, we utilize four ontologies to describe the data in our
system. These are:

4.4.1.1 MTETrackFrame

The objects in the MTETrackFrame ontology describe the output of a GMTI tracker. An
MTETrackFrame is described below:

MTETrackFrame

• Version – version of the tracker

• Frame_id – identifier for this frame

• Sensor_id – id of sensor

• Nscan – maximum hypothesis tree depth

• Frame_time – time stamp of this frame

• MSE_length – length of automatic target recognition (ATR) results vector

• MSE_results – ATR results

• Track_Data – there is one of these for each currently active track

- Track_id – id of the track

- NMTI_index – index of most recent sensor report

- Detection_count – number of frames with associated report Missed_detection_count
– number of frames w/o associated report

- Track_hypothesis_index – hypothesis index for this track

- Last_update_time – time stamp for this track data

- Status – status of the track

- Location – location of the track

- Velocity_vector – x and y velocities of the track

- Covariance – a measure of error for this track data

- Track_type – the track type

- Is_group_track – whether or not this track is part of a group

- ATR_classification – ATR class of the track

- VLF_classification – ATR class over time

- Onroad_data – info on road link track is on

- Track_group_data – info on group track is part of

- Attribute_data – size of vehicle being tracked

24

4.4.1.2 LaunchReport

The objects in the LaunchReport ontology describe reports of missile launches. A
LaunchReport is described below:

LaunchReport

• Launch_id – id of this launch report

• Launch_time – time of this launch report

• Launch_location – location of this launch

4.4.1.3 TrackPoint

The objects in the TrackPoint ontology describe an individual track report in an
MTETrackFrame. A TrackPoint is described below:

TrackPoint

• ID – the id of the track

• Status – the status of the track at this point

• Time – the timestamp on the track point

• Location – the location of the track at this point

4.4.1.4 TrackLaunchCorrelation

The objects in the TrackLaunchCorrelation ontology describe which tracks and which launches are
correlated. A TrackLaunchCorrelation is described below:

TrackLaunchCorrelation

• Track_id – id of the track that is correlated

• Launch_id – id of the launch that is correlated

4.4.2 Data Sources

4.4.2.1 Launch Analyzer Proxy

The purpose of the LaunchAnalyzerProxy is to publish missile launch reports into the
demonstration system. The LaunchAnalyzerProxy reads the missile launch reports from a file
containing GTOs which represent LaunchReport objects from the LaunchReport ASF ontology.
The LaunchAnalyzerProxy reads each GTO, examines its timestamp, and publishes it at the
appropriate time.

The LaunchAnalyzerProxy can be instructed, via a Java properties file, to begin processing
at a specified time step and to compress time by some factor. These parameters are provided to
speed up the demonstration since the launches don’t appear until timestep 1684.

4.4.2.2 GMTI Tracker Proxy

The purpose of the TrackerProxy is to publish track reports of ground vehicles into the
demonstration system. The TrackerProxy reads GMTI track reports from a file containing GTOs

25

which represent MTETrackFrame objects from the MTETrackFrame ASF ontology. The
TrackerProxy reads each GTO, examines its timestamp, and publishes it at the appropriate time.

The TrackerProxy can be instructed, via a Java properties file, to begin processing at a
specified time step and to compress time by some factor. These parameters are provided for
demonstration purposes as the track data contains one frame only every 20 seconds.

4.4.3 Fuselets

4.4.3.1 FuseletBody Interface

We implemented a generic ASF Java-based fuselet wrapper component that serves as a
template for the fuselet implementations. The wrapper component handles registration with
CORBA, supports creation of data subscriptions, establishes handlers for the data received over
subscription links, and supports publishing data from the component.

The wrapper defines a Java interface called FuseletBodyInterface that abstracts from the
implementation details of a particular fuselet. It does not constrain the implementation language of
fuselets (which in our case is XSB Prolog). The FuseletBodyInterface is a simple interface that
any fuselet can implement and easily fits into our ASF-based demonstration system. There are
four methods in the FuseletBodyInterface that a fuselet must implement:

• InitializeFuseletBody() - initializes the fuselet based on the contents of a Java properties
file

• ReceiveInput() - receives data from an ASF subscription and transforms it into the form
required by the fuselet body

• ProcessInputData() - executes the fuselet body on the current input

• ProduceOutput() - extracts the results of computation from the fuselet body for publication

4.4.3.2 Adapter Fuselet

The AdapterFuselet communicates via ASF publish and subscribe. It subscribes to objects
of one data type and publishes objects of another data type. In the demonstration system, the
AdapterFuselet subscribes to MTETrackFrames and publishes MTETrackPoints. When the
AdapterFuselet receives an MTETrackFrame over the subscription link, it calls a module to
process the incoming data. This module calls FuseletBodyInterface.ReceiveInput(), which pushes
the received object into the ALPHATECH Knowledge Server. The AdapterFuselet then calls
FuseletBodyInterface.ProcessInputData(), which invokes the XSB Prolog code generated by the
Adapter Fuselet Authoring Tool. Then, the AdapterFuselet calls
FuseletBodyInterface.ProduceOutput() which extracts the new objects from the ALPHATECH
Knowledge Server. Finally, the AdapterFuselet publishes the new objects to the rest of the system.

4.4.3.3 Correlator Fuselet

The CorrelatorFuselet communicates via ASF publish and subscribe. It subscribes to
objects of differing types and publishes objects describing correlations between the input objects.
In the demonstration system, the CorrelatorFuselet subscribes to LaunchReport objects and
MTETrackPoint objects and publishes TrackLaunchCorrelation Objects. When the

26

CorrelatorFuselet receives an MTETrackPoint or LaunchReport over the subscription link, it calls
one of two appropriate modules to process the received data. The appropriate data process module
calls FuseletBodyInterface.ReceiveInput(), which pushes the object into the ALPHATECH
Knowledge Server. The CorrelatorFuselet then calls FuseletBodyInterface.ProcessInputData(),
which invokes the XSB Prolog code generated by the Correlator Fuselet Authoring Tool. Then,
the CorrelatorFuselet calls FuseletBodyInterface.ProduceOutput() which extracts the new objects
from the ALPHATECH Knowledge Server. Finally, the CorrelatorFuselet publishes the new
objects to the rest of the system.

4.4.4 Visualization
Integrated Battlefield Visualization System (IBVS) is a visualization tool that provides an

immersive 3D visualization environment for battlespace awareness, see Figure 4-2. This 3D
virtual environment integrates terrain, map, imagery, and target object data into a unified operating
picture for the user. The user can navigate this 3D battlespace by rotating the view around any
axis and zooming in and out. IBVS was developed by ALPHATECH under an SBIR sponsored by
the US Army’s Communications and Electronics Command. IBVS receives its data via ASF
subscription.

27

Figure 4-2 IBVS visualization tool

4.4.5 Fuselet demonstration
When the demonstration is run the following behaviors are observed. The GMTI Tracker

Proxy and Launch Analyzer proxy begin publishing data. These data items are subscribed to by the
adapter and correlator fuselets (and IBVS for reference in creating the display). The adapter fuselet
consumes the track data and publishes track point data that is subscribed to by the correlator. The
correlator merges track points and launch information and publishes launch correlations. IBVS
receives track frames, launch reports, and launch correlations and uses this data to show both the
launch events and a trail associated with the correlated tracks. When correlation proceeds starting
from the launch event this provides a visualization of the vehicle dispersal following a launch. The

28

correlator can also be specified to terminate with the launch event in which case a visualization of
the vehicles converging on the launch area is provided.

29

5. CONCLUSION

This research effort has investigated the technology needed to build tools for authoring
fuselets for deployment in a JBI. We have developed two such tools and built a system to
demonstrate their use.

Future work may involve developing authoring tools for other kinds of fuselets and for
further developing the capabilities of ASF to support clients in a JBI.

In a fully realized JBI where clients and fuselets are built to a common architectural
standard and interface providing publish/subscribe data exchange the fuselet authoring technology
demonstrated in this effort will support the creation of fuselets without significant programming
effort. By using publish/subscribe protocols to wire together clients and fuselets also without
significant programming effort new information processing capabilities (at least those based on
existing data sources) can be stood up in a JBI by operators without extensive programming skills.
This technology is a significant contribution to the information superiority goals that the JBI
program addresses.

30

REFERENCES

1. Shalikashvili, J.M., Joint Vision 2010, Report of the Chairman of the Joint Chiefs of Staff, 1996.

2. Concept for Future Joint Operations: Expanding Joint Vision 2010, May 1997.

3. Report on Building the Joint Battlespace Infosphere (SAB-TR-99-02), United States Air Force Scientific
Advisory Board, December 17, 1999.

4. United States Air Force Scientific Advisory Board, Report on Information Management to Support the
Warrior, SAB-TR-98-02.

5. http://xsb.sourceforge.net

